Self-Consistent Molecular Orbital Methods. 21. Small Split-Valence Basis Sets for First-Row Elements

J. Stephen Binkley, ${ }^{\text {1a }}$ John A. Pople, ${ }^{\text {1a }}$ and Warren J. Hehre*1b
Contribution from the Department of Chemistry, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213, and the Department of Chemistry, University of California, Irvine, California 92717. Received March 5, 1979

Abstract

Two new split-valence basis sets, termed $6-21 \mathrm{G}$ and $3-21 \mathrm{G}$, are proposed for use in molecular orbital calculations on molecules containing first-row elements. The valence functions for the smaller representation (3-21G) have been taken directly from the larger $(6-21 G)$, preventing their collapse inwards to make up for deficiencies in the inner-shell region. This is necessary to ensure a good description of bonding interactions which necessarily involve overlap of valence functions. Equilibrium geometries, vibrational frequencies, relative energies, and electric dipole moments calculated using the $3-21 \mathrm{G}$ basis set are nearly identical with those obtained from the larger 6-2 1 G representation. Compared to experiment they are consistently superior to properties derived from the STO-3G minimal basis set, and of comparable quality to those obtained from the larger $4-21 G$ and $4-31 G$ representations. One notable exception is that the $4-31 G$ basis set yields hydrogenation energies in significantly better agreement with experiment than those obtained from 3-21G. The 3-21G basis set comprises the same number of primitive Gaussian functions as STO-3G (although nearly twice the number of basis functions) and should be nearly as efficient computationally as that representation for applications which require evaluation of energy derivatives as well as the energy itself (e.g., determination of equilibrium geometry and calculation of vibrational frequencies). It is less costly to apply than either the $4-21 G$ or $4-31 G$ split-valence basis sets, and in those areas where the performance of the two is comparable it would appear to be the method of choice.

Introduction

Gaussian-type basis sets used in ab initio molecular orbital computations usually involve some compromise between computational cost and accuracy. Small sets can be used for a wider range of chemical problems but involve some loss of flexibility in the resulting molecular orbitals. The simplest level of basis is minimal and corresponds to one basis function per atomic orbital. The next level is split-valence in which two basis functions are used for each valence atomic orbital. This second level is known to give a better description of the relative energies and of some geometrical features of molecules. Further improvement of a basis set requires addition of functions of higher angular quantum numbers (polarization functions). Application of basis sets of this type is generally limited to relatively small molecules.
The basis functions are normally contracted. This means that each is a linear combination of a number of primitive Gaussian functions. A considerable increase in computational efficiency can be achieved if the exponents of the Gaussian primitives are shared between different basis functions. ${ }^{2 \mathrm{a}} \mathrm{At}$ the split-valence level, this has been exploited by sharing primitive exponents between s and p functions for the valence functions. In particular, a series of basis sets has been defined and designated $K-L M G$ where K, L, and M are integers. Such a basis for a first-row element (Li to Ne) consists of an s-type inner-shell function with K Gaussians, an inner set of valence s - and p-type functions with L Gaussians, and another outer sp set with M Gaussians. Both valence sets have shared exponents. For hydrogen, only two s-type valence functions (with L and M Gaussians) are used. One such split-valence basis set ($4-31 \mathrm{G}$), defined for hydrogen and the first-row elements boron to fluorine, has already received widespread application. ${ }^{2 b, c}$ Two larger basis sets of this type ($5-31 \mathrm{G}$ and $6-31 \mathrm{G}$) have been proposed but have not been as widely applied. ${ }^{3}$

Since the 4-31G basis was proposed, computer programs have been developed which calculate analytically the derivatives of the energy with respect to nuclear coordinates. These are of great value in investigations of equilibrium structures, transition structures, force constants, and molecular vibrational frequencies. However, as several authors have pointed out, derivative programs increase greatly in efficiency as the
number of primitive Gaussians is reduced. ${ }^{4}$ This is not necessarily true for single-point (nonderivative) calculations where the computation is often dominated by the self-consistent field (SCF) procedure, which depends only on the number of basis functions and not on the number of primitives. There is, therefore, considerable motivation for the development of smaller split-valence basis sets with fewer primitives. In an important recent paper, Pulay, Forgarasi, Pang, and Boggs (PFPB) ${ }^{4 b}$ have developed such a smaller basis for hydrogen and boron through fluorine (denoted by 4-21G). They found for a series of small molecules that structures, force constants, dipole moments, and derivatives could be determined as well at this level as with the $4-31 \mathrm{G}$ basis.

The original 4-31G, 5-31G, and 6-31G split-valence basis sets were obtained by optimizing all Gaussian exponents and contraction coefficients to give the lowest Hartree-Fock (spin-unrestricted or UHF) ${ }^{5}$ energy for the atomic ground state. However, difficulties are encountered if this procedure is followed using a small number of primitives, particularly if only a small number is used for the inner-shell basis function. If there are few valence electrons (e.g., Li or Be), there is a tendency for the valence functions to "fall inward" toward the nucleus. This presumably occurs because the total energy minimization criterion prefers additional functions in the inner-shell region rather than a good description of the valence region. This happened with attempts to find a $4-31 \mathrm{G}$ basis for lithium and beryllium which ultimately proved largely unsuccessful. Consequently, a 5-21G basis for these atoms was proposed for use in conjunction with the $4-31 \mathrm{G}$ set for other first-row atoms. ${ }^{3 b}$

The "falling inward" of the valence part of split-valence basis is clearly undesirable since a good description of bonding interactions must involve the overlap of valence basis functions on neighboring atoms, which must in turn depend on a good description of the outer part of the atomic structure. Ideally, the valence part of a split-valence basis should be determined with a very good inner-shell function to prevent such an unwanted collapse. Thus, for example, we might define a "best" 21 G valence part of a split-valence $K-21 \mathrm{G}$ basis as one in which all parameters are optimized with K large (i.e., approximating an $\infty-21 \mathrm{G}$ basis). Such a basis would no longer be computationally efficient because of the large value of K. However,

Table I. 21G Basis Functions for Hydrogen and Helium

atom	α_{1}^{\prime}	d_{s}^{\prime}	$\alpha^{\prime \prime}{ }_{1}$
H	4.50180	$1.56285(-1)$	$1.51398(-1)$
	$6.81444(-1)$	$9.04691(-1)$	
He	$1.36267(+1)$	$1.75230(-1)$	$3.82993(-1)$
	1.99935	$8.93483(-1)$	

the inner-shell basis function could then be replaced by one with fewer primitives (smaller K) without reoptimizing the valence functions. This would yield a computationally efficient basis set in which the valence functions would not have collapsed to an appreciable extent.

In this paper we explore this route to obtaining efficient split-valence sets for first-row atoms. The first step is to determine and evaluate 6-21G basis sets, simulating "perfect inner-shell" $\infty-21 \mathrm{G}$ sets. The 6G inner-shell functions are then replaced by smaller (less primitives) $3 G$ inner-shell functions, and the resulting basis set is evaluated and compared with 6-21G.

Atomic Basis Sets

For atoms Li to Ne , the $K-L M G$ basis functions are defined as

$$
\begin{align*}
\varphi_{1 \mathrm{~s}}(\mathbf{r}) & =\sum_{k=1}^{K} d_{1 \mathrm{~s}, k} g_{\mathrm{s}}\left(\alpha_{1 k,}, \mathrm{r}\right) \\
\varphi_{2 \mathrm{~s}}^{\prime}(\mathbf{r}) & =\sum_{k=1}^{L} d^{\prime}{ }_{2 \mathrm{~s}, k} g_{\mathrm{s}}\left(\alpha^{\prime}{ }_{2 k}, \mathbf{r}\right) \\
\varphi_{2 \mathrm{p}}^{\prime}(\mathbf{r}) & =\sum_{k=1}^{L} d^{\prime}{ }_{2 \mathrm{p}, k} g_{\mathrm{p}}\left(\alpha^{\prime}{ }_{2 k}, \mathbf{r}\right) \tag{1}\\
\varphi^{\prime \prime}{ }_{2 \mathrm{~s}}(\mathbf{r}) & =\sum_{k=1}^{M} d^{\prime \prime}{ }_{2 \mathrm{~s}, k} g_{\mathrm{s}}\left(\alpha^{\prime \prime}{ }_{2 k,}, \mathrm{r}\right) \\
\varphi^{\prime \prime}{ }_{2 \mathrm{p}}(\mathbf{r}) & =\sum_{k=1}^{M} d^{\prime \prime}{ }_{2 \mathrm{p}, k} g_{\mathrm{p}}\left(\alpha^{\prime \prime}{ }_{2 k,}, \mathbf{r}\right)
\end{align*}
$$

where g_{s} and g_{p} are normalized s- and p-type Gaussian functions, respectively. For hydrogen and helium, only two s-type basis functions are used containing L and M primitives. Thus

$$
\begin{align*}
\varphi_{s}^{\prime}(\mathbf{r}) & =\sum_{k=1}^{L} d_{\mathrm{s}, k}^{\prime} g_{\mathrm{s}}\left(\alpha_{k}^{\prime}, \mathbf{r}\right) \tag{2}\\
\varphi_{\mathrm{s}}^{\prime \prime}(\mathbf{r}) & =\sum_{k=1}^{M} d^{\prime \prime}{ }_{\mathrm{s}, k} g_{\mathrm{s}}\left(\alpha^{\prime \prime}{ }_{k}, \mathbf{r}\right)
\end{align*}
$$

The basis sets introduced in this paper have $L=2$ and $M=1$. Values of K of 3 and 6 are considered.

The $6-21 \mathrm{G}$ basis is first obtained by minimization of the UHF atomic energies, all d coefficients and α exponents being varied subject to normalization. Numerical procedures have been discussed elsewhere. ${ }^{2 b}$ For atoms $\mathrm{H}, \mathrm{He}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}$, F. and $N e$, the atomic ground state is used. For Be, the $(1 s)^{2}(2 s)(2 p)^{3} P$ excited state is used to obtain a good simultaneous description of valence s- and p-type orbitals. For Li, the s-type basis functions are determined using the $(1 s)^{2}(2 s)^{2} S$ ground state and the contraction coefficients for p functions are found subsequently using the $(1 \mathrm{~s})^{2}(2 \mathrm{p})^{2} \mathrm{P}$ excited state, holding the other parameters fixed. Complete results are given in Tables 1 and 11. The hydrogen and helium values have been obtained previously by van Duijneveldt. ${ }^{6}$ All values are given with six figures and need to be slightly renormalized when used in practice.

As mentioned in the Introduction, our interest is to find valence basis functions close to those appropriate for perfect
inner-shell functions. To test whether this level is adequately approached with $K=6$, an $8-21 \mathrm{G}$ basis was found for carbon using the same technique. All parameters for the valence functions were found to be within 1% of the $6-21 \mathrm{G}$ values; this is judged to be sufficiently close. No further investigations were undertaken with $K>6$.

Having found the complete $6-21 \mathrm{G}$ basis, the next step is to formulate $K-21 \mathrm{G}$ bases for Li to Ne with smaller K, holding the valence part fixed. This is done by reoptimizing the $\varphi_{1 s}$ parameters for the atomic ground states (except ${ }^{3} \mathrm{P}$ for beryllium). The resulting values for $K=3$ are listed in Table 111 . Finally, 6-21G and 3-21G atom energies are found in Table IV.

Molecular Scaling Factors

The basis sets listed in the previous section are appropriate to atoms. For use in molecular calculations, our previous practice ${ }^{2 b, c .3}$ has been to rescale the functions

$$
\begin{equation*}
\varphi^{\text {moleculc }}(\mathrm{r})=\zeta^{-3 / 2} \varphi(\zeta r) \tag{3}
\end{equation*}
$$

choosing the ζ values to be optimum for some "average molecular environment". This has long been known to be particularly important for hydrogen. To study possible rescaling of the $K-21 \mathrm{G}$ basis sets. we have optimized the energies of some small molecules with respect to both geometrical parameters and separate scaling factors ζ^{\prime} and $\zeta^{\prime \prime}$ for the inner and outer valence functions. Results for AH_{n} molecules with only one nonhydrogen atom are listed in Table V. Corresponding results for some diatomic molecules are in Table V1.

These optimum scale factors show considerable variation. In our previous development of the $4-31 \mathrm{G}$ basis, ${ }^{2 b, c}$ we proposed a somewhat arbitrary set of "average molecular scaling factors' for use in calculations on molecules. However, for atoms Li to Ne , we elect not to do this with the $6-21 \mathrm{G}$ and 3-21G basis sets, so that the basis functions will be used without further modification. There are two main reasons for this. In the first place. optimum ζ values both greater and less than unity are found for all atoms except boron. Secondly, if the basis sets are to be used for exploration of reactive potential surfaces where atoms are partly removed from molecules, a good description of the free atom is also important. The most serious inadequacy of using unit scale factors occurs for lithium, where an optimum value of 1.5 is found for $\zeta^{\prime \prime \prime} L i$ in lithium fluoride. This reflects contracted character for the valence functions in this highly ionic compound. However, as is evident in the next section, use of a scale factor of unity does not have a major adverse effect on the calculated properties of even this system.

We shall continue to treat hydrogen as an exception. The optimum scale factors are almost always greater than unity. Nevertheless, the scale factors used previously ${ }^{2 b}\left(\zeta^{\prime}=1.20\right.$. $\left.\zeta^{\prime \prime}=1.15\right)$ are based too heavily on hydrogen in polar bonds. To give a better average description and to give greater weight to hydrogen is partially broken bonds, we propose to use $\zeta^{\prime}=$ $\zeta^{\prime \prime}=1.10$ in the $6-21 \mathrm{G}$ and $3-21 \mathrm{G}$ basis sets.

Performance of the 6-21G and 3-21 Split-Valence Basis Sets ${ }^{7}$

Equilibrium Geometry Comparisons. Equilibrium geometries calculated for hydrogen and for the one heavy-atom hydrides of lithium to fluorine using the $6-21 \mathrm{G}$ and $3-21 \mathrm{G}$ basis sets are presented in Table VII. Here they are compared to experimental data where available as well as to previously obtained results ${ }^{10}$ at the minimal basis STO-3G. ${ }^{11}$ the PFPB 4-21G, ${ }^{46}$ and $4-31 \mathrm{G}^{2}$ split-valence basis levels. Mean absolute deviation

Table II. 6-21G Basis Functions for Lithium to Neon

	α_{1}	d_{15}	$\alpha^{\prime}{ }_{2}$	$d^{\prime}{ }_{2 s}$	$d^{\prime}{ }_{2} \mathrm{p}$	$\alpha^{\prime \prime}{ }_{2}$
Li	$\begin{aligned} & 6.42418(+2) \\ & 9.65164(+1) \\ & 2.20174(+1) \\ & 6.17645 \\ & 1.93511 \\ & 6.39577(-1) \end{aligned}$	$\begin{aligned} & 2.15096(-3) \\ & 1.62677(-2) \\ & 7.76383(-2) \\ & 2.46495(-1) \\ & 4.67506(-1) \\ & 3.46915(-1) \end{aligned}$	$\begin{aligned} & 5.40205(-1) \\ & 1.02255(-1) \end{aligned}$	$\begin{array}{r} -2.63127(-1) \\ 1.14339 \end{array}$	$\begin{aligned} & 1.61546(-1) \\ & 9.15663(-1) \end{aligned}$	$2.85645(-2)$
Be	$\begin{aligned} & 1.26450(+3) \\ & 1.89930(+2) \\ & 4.31275(+1) \\ & 1.20889(+1) \\ & 3.80790 \\ & 1.28266 \end{aligned}$	$\begin{aligned} & 1.94336(-3) \\ & 1.48251(-2) \\ & 7.20662(-2) \\ & 2.37022(-1) \\ & 4.68789(-1) \\ & 3.56382(-1) \end{aligned}$	$\begin{aligned} & 1.29548 \\ & 2.68881(-1) \end{aligned}$	$\begin{gathered} -4.21064(-1) \\ 1.22407 \end{gathered}$	$\begin{aligned} & 2.05132(-1) \\ & 8.82528(-1) \end{aligned}$	$7.73501(-2)$
B	$\begin{aligned} & 2.08212(+3) \\ & 3.12310(+2) \\ & 7.08874(+1) \\ & 1.98525(+1) \\ & 6.29161 \\ & 2.12862 \end{aligned}$	$\begin{aligned} & 1.84986(-3) \\ & 1.41277(-2) \\ & 6.92697(-2) \\ & 2.32393(-1) \\ & 4.70154(-1) \\ & 3.60288(-1) \end{aligned}$	$\begin{aligned} & 2.28187 \\ & 4.65248(-1) \end{aligned}$	$\begin{gathered} -3.68662(-1) \\ 1.19944 \end{gathered}$	$\begin{aligned} & 2.31152(-1) \\ & 8.66764(-1) \end{aligned}$	$1.24328(-1)$
C	$\begin{aligned} & 3.04752(+3) \\ & 4.56424(+2) \\ & 1.03653(+2) \\ & 2.92258(+1) \\ & 9.34863 \\ & 3.18904 \end{aligned}$	$\begin{aligned} & 1.82588(-3) \\ & 1.40566(-2) \\ & 6.87570(-2) \\ & 2.30422(-1) \\ & 4.68463(-1) \\ & 3.62780(-1) \end{aligned}$	$\begin{aligned} & 3.66498 \\ & 7.70545(-1) \end{aligned}$	$\begin{gathered} -3.95897(-1) \\ 1.21584 \end{gathered}$	$\begin{aligned} & 2.36460(-1) \\ & 8.60619(-1) \end{aligned}$	$1.95857(-1)$
N	$\begin{aligned} & 4.15011(+3) \\ & 6.20084(+2) \\ & 1.41688(+2) \\ & 4.03367(+1) \\ & 1.30267(+1) \\ & 4.47003 \end{aligned}$	$\begin{aligned} & 1.84541(-3) \\ & 1.41645(-2) \\ & 6.86325(-2) \\ & 2.28574(-1) \\ & 4.66162(-1) \\ & 3.65672(-1) \end{aligned}$	$\begin{aligned} & 5.42522 \\ & 1.14915 \end{aligned}$	$\begin{gathered} -4.13301(-1) \\ 1.22442 \end{gathered}$	$\begin{aligned} & 2.37972(-1) \\ & 8.58953(-1) \end{aligned}$	$2.83205(-1)$
O	$\begin{aligned} & 5.47227(+3) \\ & 8.17806(+2) \\ & 1.86446(+2) \\ & 5.30230(+1) \\ & 1.71800(+1) \\ & 5.91196 \end{aligned}$	$\begin{aligned} & 1.83217(-3) \\ & 1.41047(-2) \\ & 6.86262(-2) \\ & 2.29376(-1) \\ & 4.66399(-1) \\ & 3.64173(-1) \end{aligned}$	$\begin{aligned} & 7.40294 \\ & 1.57620 \end{aligned}$	$\begin{aligned} & -4.04453(-1) \\ & 1.22156 \end{aligned}$	$\begin{aligned} & 2.44586(-1) \\ & 8.53955(-1) \end{aligned}$	$3.73684(-1)$
F	$\begin{aligned} & 6.78319(+3) \\ & 1.04244(+3) \\ & 2.42398(+2) \\ & 6.96320(+1) \\ & 2.26894(+1) \\ & 7.79636 \end{aligned}$	$\begin{aligned} & 1.88463(-3) \\ & 1.38121(-2) \\ & 6.62493(-2) \\ & 2.21875(-1) \\ & 4.60842(-1) \\ & 3.78453(-1) \end{aligned}$	$\begin{aligned} & 9.77759 \\ & 2.08617 \end{aligned}$	$\begin{array}{r} -4.07327(-1) \\ 1.22314 \end{array}$	$\begin{aligned} & 2.46680(-1) \\ & 8.52321(-1) \end{aligned}$	$4.82383(-1)$
Ne	$\begin{aligned} & 8.78583(+3) \\ & 1.32390(+3) \\ & 3.00795(+2) \\ & 8.51891(+1) \\ & 2.76534(+1) \\ & 9.53039 \end{aligned}$	$\begin{aligned} & 1.78077(-3) \\ & 1.35790(-2) \\ & 6.70847(-2) \\ & 2.26825(-1) \\ & 4.65053(-1) \\ & 3.68995(-1) \end{aligned}$	$\begin{aligned} & 1.24830(+1) \\ & 2.66451 \end{aligned}$	$\begin{gathered} -4.09922(-1) \\ 1.22431 \end{gathered}$	$\begin{aligned} & 2.47460(-1) \\ & 8.51743(-1) \end{aligned}$	$6.06250(-1)$

of both $6-21 \mathrm{G}$ and $3-21 \mathrm{GAH}$ bond lengths from experiment is $0.016 \AA$ (six comparisons). The corresponding deviations in the STO-3G and $4-3$ I G bond lengths are 0.035 and $0.014 \AA$, respectively. The $6-21 \mathrm{G}$ and $3-2 \mathrm{IG}$ bond angles in ammonia and water are closer to experimental values than those obtained with the 4-3IG basis, although they are still too large. This improvement has already been noted by PFPB in their work using a 4-21G basis set. ${ }^{4 b}$ STO-3G bond angles for these two molecules are smaller than the experimental values.

A larger set of 6-21G and 3-2 1 G geometries for two-heavy atom systems for which experimental structural data are available is presented in Table V1II. Again comparisons are drawn with the results of STO-3G, 4-2 1 G , and 4-31G calculations, some of which have previously been published. ${ }^{2 b .4 b, 12}$ Note that here, as in the case of the one heavy-atom hydrides, equilibrium geometries calculated using the $6-21 \mathrm{G}$ and $3-21 \mathrm{G}$ basis set are nearly identical. For example, the mean absolute
deviations from experiment of $6-21 \mathrm{G}$ and $3-21 \mathrm{G} \mathrm{AB}$ bond lengths are 0.016 and $0.016 \AA$, respectively (45 comparisons). These errors compare to deviations of 0.028 and $0.016 \AA$ for the STO-3G and 4-31G calculations, respectively. Thus, again it would appear that equilibrium structures calculated using any of the $6-21 \mathrm{G}, 3-21 \mathrm{G}$, or PFPB 4-21G basis sets are of comparable quality to those derived from $4-31 \mathrm{G}$ and superior to geometries obtained at the STO-3G level. Certain failures of this type of basis set (no polarization functions) are common to $3-21 \mathrm{G}, 6-21 \mathrm{G}$, and $4-31 \mathrm{G}$. Most notable is the incorrect prediction of a trans structure for hydrogen peroxide.

Calculated 6-21G, 3-21G, and 4-31G total energies for the one- and two-heavy-atom molecules for which theoretical equilibrium geometries have been determined are given in Table 1X. STO-3G total energies have been published previously. ${ }^{12 a}$

Molecular Vibrational Frequencies. Vibrational frequencies

Table III. 3-21G Inner-Shell Basis Functions for Lithium to Neon

	$3-21 G$	
	α_{1}	d_{15}
Li	$3.68382(+1)$	$6.96686(-2)$
	5.48172	$3.81346(-1)$
	1.11327	$6.81702(-1)$
Be	$7.18876(+1)$	$6.44263(-2)$
	$1.07289(+1)$	$3.66096(-1)$
	2.22205	$6.95934(-1)$
B	$1.1634(+2)$	$6.29605(-2)$
	$1.74314(+1)$	$3.63304(-1)$
	3.68016	$6.97255(-1)$
C	$1.72256(+2)$	$6.17669(-2)$
	$2.59109(+1)$	$3.58794(-1)$
	5.53335	$7.00713(-1)$
N	$2.42766(+2)$	$5.98657(-2)$
	$3.64851(+1)$	$3.52955(-1)$
	7.81449	$7.06513(-1)$
O	$3.22037(+2)$	$5.92394(-2)$
	$4.84308(+1)$	$3.51500(-1)$
	$1.04206(+1)$	$7.07658(-1)$
F	$4.13801(+2)$	$5.85483(-2)$
	$6.22446(+1)$	$3.49308(-1)$
	$1.34340(+1)$	$7.09632(-1)$
Ne	$5.15724(+2)$	$5.81430(-2)$
	$7.76538(+1)$	$3.47951(-1)$
	$1.68136(+1)$	$7.10714(-1)$

Table IV. Energies of Atomic Ground States (hartrees)

atom	$6-21 \mathrm{G}$	$3-21 \mathrm{G}$
H^{a}	-0.496979	-0.496979
He	-2.835680	-2.835680
Li^{b}	-7.430630	-7.381513
Be^{c}	-14.569304	-14.486820
B	-24.516842	-24.389762
C	-37.658966	-37.481070
N	-54.342410	-54.105390
O	-74.700940	-74.393657
F	-99.230341	-98.845009
Ne	-128.275846	-127.803825

a Scaled value $=-0.496199$. See text following for discussion. ${ }^{b}$ Value for ${ }^{2}$ P state ($6-21 \mathrm{G}$): $-7.363352 .{ }^{c}$ Value for ${ }^{3} \mathrm{P}$ state (6 $21 \mathrm{G}):-14.506096$.
for the water and ammonia molecules obtained from the 6-21G and 3-2 1G basis sets are compared to experimental values in Table X. Also included are frequencies calculated using the STO-3G and 4-31G methods. ${ }^{13}$ Theoretical frequencies have been calculated by determination of the complete quadratic force field (matrix of second derivatives) evaluated at the
theoretical equilibrium geometry, anharmonic effects being neglected. Calculated frequencies corresponding to bond stretching modes are consistently higher than the corresponding experimental values for all levels of theory. Frequencies obtained from quadratic force constants calculated from the $6-21 \mathrm{G}$ and $3-2 \mathrm{IG}$ basis sets are in best accord with the experimental quantities; those derived from the minimal STO-3G representation are most in error. The calculated bending mode frequency in water is overestimated by all levels of theory, the three split-valence basis sets yielding comparable results, the minimal STO-3G representation a value which is 35% too high. The same situations holds for the degenerate pair of bending vibrational modes in ammonia. The frequency associated with the symmetrical bend in ammonia (the mode leading to inversion at the nitrogen center) is, on the other hand, underestimated by all three split-valence levels, the 6-2 IG and 3-21G results being significantly closer to the experimental value than the frequency derived from $4-31 \mathrm{G}$ calculations. The STO-3G basis set again overestimates the magnitude.

Energy Comparisons. Theoretical energies for complete hydrogenation of two heavy-atom molecules (the same set as previously discussed) are presented in Table XI. Results obtained at the $6-21 \mathrm{G}$ and $3-21 \mathrm{G}$ levels have been compared both to experimental values (enthalpies) and to those derived from STO-3G and 4-31G calculations. ${ }^{14}$ In general, the $6-21 \mathrm{G}$ and 3-21G reaction energies are similar, the largest difference between the two being $4.5 \mathrm{kcal} \mathrm{mol}^{-1}$ for the complete hydrogenation of nitrogen. Although the theoretical hydrogenation energies at either of these levels are clearly superior to those obtained using the minimal basis set STO-3G method (mean absolute deviations of $6-21 \mathrm{G}$ and 3-21G hydrogenation energies from experiment are 8.9 and $9.8 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$, respectively, for 18 comparisons, and $22.2 \mathrm{kcal} \mathrm{mol}^{-1}$ for STO-3G) they are not in as good agreement with the experimental enthalpies as those obtained at 4-31G (mean absolute deviation of $6.8 \mathrm{kcal} \mathrm{mol}^{-1}$). The largest errors occur for saturated systems and for molecules with highly electronegative atoms. The significant deviation from the 4-31G results is presumably a consequence of the fact that, owing to a decrease in the number of Gaussian functions employed in the description of the valence atomic orbitals, the $6-21 \mathrm{G}$ and 3-21G functions are not as diffuse as the corresponding 4-31G representations.
A comparison of calculated (6-21G, 3-21G, STO-3G, and $4-31 \mathrm{G}$ levels) and experimental relative isomer energies is presented in Table XII. ${ }^{15}$ STO-3G optimized geometries have been employed throughout. ${ }^{16}$ Again the $6-21 \mathrm{G}$ and $3-2$ IG energy differences are very similar, and generally are superior to the corresponding STO-3G values but not quite as good as the 4-31G results. Mean absolute deviations between 6-2 IG and $3-21 \mathrm{G}$ relative energies and experimental enthalpy differences are 5.7 and $6.0 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively (nine comparisons). Corresponding deviations for the STO-3G and $4-31 \mathrm{G}$ basis sets are 13.6 and $5.2 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. The 6-21G and 3-21G basis sets perform most poorly in the comparison of acyclic and small-ring isomers (e.g., propyne/cy-

Table V. Optimum Geometries ${ }^{a}$ and Valence Scale Factors for Molecules AH_{n} (6-21G)

molecule	R	θ	ζ_{A}^{\prime}	$\zeta^{\prime \prime}$	ζ_{H}	$\zeta^{\prime \prime} \mathbf{H}$	-7.97915
LiH	1.635	1.336		1.028	1.064	1.208	1.157
BeH_{2}	1.081		1.022	.955	1.329	1.343	-15.75741
BH_{3}	0.997		1.010	1.004	1.133	1.196	
CH_{4}	0.969	108.4	1.013	1.112	1.090	0.996	-26.36319
NH_{3}	0.932	0.983	0.977	1.150	1.080	-50.15344	
OH_{2}		0.994	0.977	1.203	1.173	-75.89125	
FH			0.985	1.270	1.333		

[^0]Table VI. Optimum Geometries and Valence Scale Factors for Molecules AB (6-21G)

molecule AB	R	$\zeta_{\mathrm{A}}^{\prime}$	$\zeta^{\prime \prime}$	$\zeta^{\prime} \mathrm{B}$	$\zeta^{\prime \prime}$	E
Li_{2}	2.823	0.905	0.950	0.905	0.950	-14.86777
$\mathrm{LiF}^{\mathrm{N}_{2}}$	1.526	1.129	1.503	0.998	0.982	-106.79353
CO^{F}	1.082	0.986	1.006	0.986	1.006	-198.77349
$\mathrm{~F}_{2}$	1.127	1.006	0.984	1.007	1.028	-112.57464

Table VII. Calculated and Experimental Equilibrium Geometries for Hydrogen and One-Heavy-Atom Hydrides

molecule	point group	geometrical parameter	6-21G	3-21G	STO-3G	4-21 $\mathrm{G}^{4 \mathrm{~b}}$	4-31G.	exptla
H_{2}	$D_{\infty} h$	r (HH)	0.735	0.735	0.712	0.732	0.730	0.741
LiH	$C_{\infty-1}$	$r(\mathrm{LiH})$	1.636	1.640	1.510		1.637	1.595
BeH_{2}	D_{∞} h	$r(\mathrm{BeH})$	1.338	1.339	1.291		1.332	
BH_{3}	$D_{3 h}$	$r(\mathrm{BH})$	1.187	1.188	1.160	1.183	1.183	
$\mathrm{CH}_{4}{ }^{\text {b }}$	T_{d}	$r(\mathrm{CH})$	1.083	1.083	1.083	1.082	1.081	1.086
NH_{3}	$C_{3 c}$	r (NH)	1.003	1.003	1.033	1.000	0.991	1.012
$\mathrm{OH}_{2}{ }^{\mathrm{c}}$	$C_{2 r}$	$\angle(\mathrm{HNH})$	112.1	112.4	104.2	112.6	115.8	106.7
		$r(\mathrm{OH})$	0.968	0.967	0.990	0.963	0.950	0.959
		$\angle(\mathrm{HOH})$	107.5	107.6	100.0	108.1	111.2	103.9
FH	C_{002}.	$r(\mathrm{FH})$	0.939	0.937	0.956	0.936	0.922	0.917

${ }^{a}$ Experimental data for diatomic molecules from S. Boucier, "Spectroscopic Data Relative to Diatomic Molecules", Vol. 17 of "Tables of Constants and Numerical Data", Pergamon Press, Elmsford, N.Y., 1970, or from G. Herzberg, "Spectra of Diatomic Molecules", Van Nostrand-Reinhold, Princeton, N.J., 1970. For polyatomic molecules from J. H. Callomon, E. Hirota, K. Kuchitsu, W. J. Lafferty, A. G. Maki, and C. S. Pote, "Structure Data on Free Polyatomic Molecules", Vol. 7 of Landolt-Bornstein, "Numerical Data and Function Relationships in Science and Technology", New Series, K. H. Hellwege, Ed., Springer-Verlag, West Berlin, 1976. ${ }^{b}$ Experimental r_{e} reported by A. G. Robiette, at the Seventh Austin Symposium on Gas Phase Molecular Structure, University of Texas, Austin, Texas, 1978. ${ }^{\text {c }}$ Experimental equilibrium structure from R. L. Cook, F. C. De Lucia, and P. Helminger, J. Mol. Spectrosc., 53, 62 (1974)
clopropene) where the methods unduly favor the open-chain system. This is also a documented failing of the $4-31 \mathrm{G}$ basis set. ${ }^{15}$ Another conspicuous failing of the $6-21 \mathrm{G}$ and $3-21 \mathrm{G}$ methods is in the comparison of the relative stabilities of trans-ethanol and dimethyl ether. Here both levels underestimate the experimental difference ($12.2 \mathrm{kcal} \mathrm{mol}^{-1}$) by more than half.

Electric Dipole Moments. Electric dipole moments calculated using the 6-21G, 3-21G, and PFPB 4-21G basis sets are presented in Table XIII. These are compared both with experimental values and with results of STO-3G and $4-31 \mathrm{G}$ calculations. ${ }^{17}$ As anticipated on the basis of our other studies, the two new split-valence basis sets yield results which are nearly identical. The calculated $6-21 \mathrm{G}$ and 3-21G dipole moments are generally, but not always, higher than the corresponding experimental values, the same trend as previously noted for the $4-31 G$ split-valence basis set. Similar trends are shown by the $4-21 \mathrm{G}$ basis. ${ }^{4 b}$ On the other hand, the STO-3G minimal basis set generally underestimates the magnitudes of electric dipole moments. Mean absolute deviations between calculated and experimental electric dipole moments are 0.47 and 0.48 for the $6-21 \mathrm{G}$ and $3-21 \mathrm{G}$ basis sets (13 comparisons), smaller than the corresponding mean deviations from the STO-3G and $4-31 \mathrm{G}$ calculations, 0.72 and 0.52 D , respectively.

Conclusion

Two new split-valence basis sets (termed 6-2lG and 3-2lG) have been constructed for use in molecular orbital calculations on molecules containing first-row elements. Their performance, with regard to the calculation of equilibrium geometries and molecular vibrational frequencies and in the description of relative molecular energies, has been assessed, enabling the following general conclusions to be drawn.

Equilibrium geometries, vibrational frequencies, relative energies, and electric dipole moments calculated using the $3-21 \mathrm{G}$ basis set are very close to those obtained using the $6-21 \mathrm{G}$
representation, which, with its improved inner-shell description, does lead to significantly lower total energies. It is likely that other properties which do not depend to a significant extent on the description in the region of the atomic nuclei will likewise be handled equally by the two basis sets.

Equilibrium geometries calculated using the $6-21 \mathrm{G}$ and 3-2 IG basis sets are (in the mean) superior to those obtained from STO-3G calculations. They are approximately equal to 4-31G level structures, and superior with regard to the description of bond angles involving heteroatoms. Vibrational frequencies obtained using either of the $6-21 \mathrm{G}$ or $3-21 \mathrm{G}$ basis sets are also of comparable quality if not superior to those derived from $4-31 \mathrm{G}$, and significantly closer to experiment than STO-3G values. The $6-21 \mathrm{G}$ and $3-2 \mathrm{IG}$ basis sets do not fare as well as $4-31 \mathrm{G}$ with regard to the calculation of the energies of complete hydrogenation, although all three basis sets perform significantly better than STO-3G. On the other hand, calculated $6-21 \mathrm{G}$ and $3-21 \mathrm{G}$ relative isomer energies are of comparable quality to those obtained at the $4-31 \mathrm{G}$ values. Finally, 6-21 G and $3-21 \mathrm{G}$ electric dipole moments are, in the mean, closer to experimental values than are those obtained either from 4-31G (which are generally larger) or STO-3G (which are generally smaller).

The $3-21 \mathrm{G}$ basis set contains fewer primitive Gaussian functions than the previously introduced $4-31 \mathrm{G}$ and PFPB 4-2IG representations and, therefore, offers a significant computational advantage, particularly in applications which call for evaluation of energy derivatives (e.g., geometry optimizations and force constant evaluations). Preliminary explorations with even smaller representations (e.g., 3-11G and 1-21G) suggest that it is about the simplest split-valence basis set which performs moderately well with regard to the calculation molecular properties. ${ }^{18}$ The $3-21 G$ representation contains the same number of primitives as the widely used STO-3G minimal basis set, although it comprises almost twice the number of basis functions per atom (two for hydrogen and helium and nine for lithium to neon, vs. one and five basis

Table VIII. Calculated and Experimental Equilibrium Geometries for Two-Heavy-Atom Molecules

molecule	point group	geometrical parameter	6-21G	3-21G	STO-3G	$4-21 G^{4 b}$	4-31G	exptla ${ }^{\text {a }}$
Li - Li	$D_{\infty} h$	r (LiLi)	2.818	2.816	2.698		2.803	2.672
$\mathrm{Li}-\mathrm{O}-\mathrm{H}^{\text {b }}$	$C_{\infty 0}$	$r(\mathrm{LiO})$	1.536	1.537	1.432		1.577	1.582
		r (OH)	0.956	0.955	0.971		0.941	
Li-F	C_{∞}	r (LiF)	1.522	1.520	1.407		1.561	1.564
	$D_{2 h}$	r (BB)	1.789	1.786	1.805		1.792	1.770
		$r\left(\mathrm{BH}_{\mathrm{a}}\right)$	1.182	1.182	1.154		1.178	1.192
${ }_{\mathrm{H}}{ }^{\text {B }} \sim_{\mathrm{H}} \sim^{\mathrm{B}} \nabla_{\mathrm{H}_{3}}$		$r\left(\mathrm{BH}_{\mathrm{b}}\right)$	1.315	1.315	1.327		1.315	1.329
		$\angle\left(\mathrm{H}_{\mathrm{a}} \mathrm{BH}_{\mathrm{a}}\right)$	122.2	122.4	122.6		122.1	121.8
$\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$	$D_{\infty h}$	$r(\mathrm{CC})$	1.188	1.188	1.168	1.185	1.190	1.203
		$r(\mathrm{CH})$	1.051	1.051	1.065	1.051	1.051	1.061
	$D_{2 h}$	$r(\mathrm{CC})$	1.315	1.315	1.306	1.312	1.316	1.330
		$r(\mathrm{CH})$	1.074	1.074	1.082	1.073	1.073	1.076
		$\angle(\mathrm{HCH})$	116.2	116.2	115.6	116.0	116.0	116.6
H ${ }^{\text {H }}$	$D_{3 d}$	$r(\mathrm{CC})$	1.542	1.542	1.538	1.541	1.529	1.526
C-C- \sim_{2}		$r(\mathrm{CH})$	1.084	1.084	1.086	1.083	1.083	1.088
H^{+}		$\angle(\mathrm{HCH})$	108.0	108.1	108.2	108.0	107.7	107.4
$\mathrm{H}-\mathrm{C}=\mathrm{N}$	C_{∞}	$r(\mathrm{CN})$	1.139	1.137	1.153	1.137	1.140	1.153
		$r(\mathrm{CH})$	1.051	1.050	1.070	1.051	1.051	1.065
$\mathrm{H}-\stackrel{+}{N} \equiv \mathrm{C}^{-d}$	$C_{\infty 0}$	r (NC)	1.161	1.160	1.170	1.162	1.162	1.165
		$r(\mathrm{NH})$	0.983	0.983	1.011	0.980	0.979	0.994
	C_{s}	$r(\mathrm{CN})$	1.472	1.471	1.486	1.474	1.450	1.471
		$r\left(\mathrm{CH}_{\mathrm{a}}\right)$	1.091	1.090	1.093	1.089	1.089	1.099
		$r\left(\mathrm{CH}_{\mathrm{b}}\right)$	1.083	1.083	1.089	1.081	1.081	1.099
		$r\left(\mathrm{NH}_{\mathrm{c}}\right)$	1.004	1.004	1.033	1.000	0.993	1.010
		$\angle\left(\mathrm{NCH}_{\mathrm{a}}\right)$	114.9	114.8	113.7	114.6	114.5	114.6
		$\angle\left(\mathrm{NCH}_{\mathrm{bb}}\right)$	123.3	123.4	124.0		124.2	123.6
		$\angle\left(\mathrm{H}_{\mathrm{b}} \mathrm{CH}_{\mathrm{b}}\right)$	107,6	107.6	108.2		107.3	108.0
		$\angle\left(\mathrm{CNH}_{\mathrm{cc}}\right)$	134.8	135.3	119.1	135.0	144.4	125.7
		$\angle\left(\mathrm{H}_{\mathrm{c}} \mathrm{NH}_{\mathrm{c}}\right)$	111.0	111.2	104.4	110.9	113.4	107.1
$\overline{\mathrm{C}}=\mathrm{O}^{+}$	C_{∞}	$r(\mathrm{CO})$	1.131	1.129	1.146	1.130	1.128	1.128
	$C_{2 l}$	$r(\mathrm{CO})$	1.209	1.207	1.217	1.208	1.206	1.203
		$r(\mathrm{CH})$	1.084	1.083	1.101	1.084	1.081	1.101
		$\angle(\mathrm{HCH})$	115.2	115.0	114.5	115.2	116.4	116.5
	C_{s}	$r(\mathrm{CO})$	1.444	1.441	1.433	1.446	1.430	1.421
		$r\left(\mathrm{CH}_{\mathrm{a}}\right)$	1.079	1.079	1.092	1.079	1.076	1.093
		$r\left(\mathrm{CH}_{\mathrm{b}}\right)$	1.085	1.085	1.095	1.085	1.083	1.093
		$r\left(\mathrm{OH}_{\mathrm{c}}\right)$	0.967	0.966	0.991	0.962	0.950	0.963
		$\angle\left(\mathrm{OCH}_{\mathrm{a}}\right)$	106.2	106.3	107.7		106.3	107.0
		$\angle\left(\mathrm{OCH}_{\mathrm{bb}}\right)$	130.6	130.5	130.4		129.6	129.8
		$\angle\left(\mathrm{H}_{\mathrm{b}} \mathrm{CH}_{\mathrm{b}}\right)$	108.7	108.7	108.1		109.2	$\begin{aligned} & 108.5 \\ & 1080 \end{aligned}$
		$\angle\left(\mathrm{COH}_{\mathrm{c}}\right)$	110.1	110.3	103.8	110.4	113.2	108.0
	$C_{3 i}$	$r(\mathrm{CF})$	1.408	1.404	1.384		1.412	1.383
		$r(\mathrm{CH})$	1.080	1.080	1.097		1.076	1.100
H		$\angle(\mathrm{HCH})$	109.5	109.5	108.3		110.7	110.6
$\mathrm{N} \equiv \mathrm{N}$	$D_{\infty h}$	$r(\mathrm{NN})$	1.084	1.083	1.134	1.084	1.085	1.094
	$\mathrm{C}_{2 h}$	$r(\mathrm{NN})$	1.240	1.239	1.267		1.226	1.252
		$r(\mathrm{NH})$	1.022	1.021	1.061		1.012	1.028
		$\angle(\mathrm{NNH})$	108.9	109.0	105.3		110.5	106.9
	C_{2}	$r(\mathrm{NN})$	1.451	1.451	1.459		1.401	1.447
		$r\left(\mathrm{NH}_{\mathrm{a}}\right)$	1.003	1.003	1.037		0.992	1.008
		$r\left(\mathrm{NH}_{\mathrm{b}}\right)$	1.007	1.007	1.040		0.995	1.008
		$\angle\left(\mathrm{NNH}_{\mathrm{a}}\right)$	109.0	109.0	105.4		113.0	109.2
		$\angle\left(\mathrm{NNH}_{\mathrm{b}}\right)$	113.4	113.3	109.0		116.6	109.2
		$\angle\left(\mathrm{H}_{\mathrm{a}} \mathrm{NH}_{\mathrm{b}}\right)$	111.8	111.8	104.6		115.0	113.3
		$\omega\left(\mathrm{H}_{\mathrm{a}} \times \mathrm{NH}_{\mathrm{b}}\right)$	93.7	93.8	91.5		92.1	88.9
	Cs	r (NO)	1.218	1.217	1.231		1.197	1.212
		r (NH)	1.037	1.036	1.082		1.026	1.063
		$\angle(\mathrm{ONH})$	109.5	109.4	107.6		110.7	108.6
H_{H}	C_{s}	r (NO)	1.476	1.472	1.427		1.442	1.453
		r (NH)	1.003	1.002	1.044		0.998	1.016
		$r(\mathrm{OH})$	0.960	0.959	0.995		0.951	0.962
		$\angle\left(\mathrm{ONH}_{2}\right)$	114.7	114.7	113.8		119.2	112.7
		$\angle(\mathrm{HNH})$	109.7	109.6	103.3		111.5	107.1
		$\angle(\mathrm{NOH})$	103.4	103.6	101.4		106.0	101.4
$y=0$	D_{∞}	$r(\mathrm{OO})$	1.241	1.241	1.217		1.196	1.207
	C_{2}	$r(\mathrm{OO})$	1.478	1.473	1.395		1.468	1.475
		$r(\mathrm{OH})$	0.972	0.971	1.001		0.955	0.950
		$\angle(\mathrm{OOH})$	99.4	99.4	101.1		100.8	94.8
		$\omega(\mathrm{HOOH})$	180.0	180.0	125.3		180.0	120.0

Table VIII (Continued)

molecule	point group	geometrical parameter	6-21G	3-21G	STO-3G	$4-21 G^{4 b}$	4-31G	exptl ${ }^{\text {a }}$
	C_{s}	r (OF)	1.442	1.439	1.355		1.443	1.442
		$r(\mathrm{OH})$	0.977	0.976	1.006		0.961	0.964
		\angle (HOF)	99.0	99.0	101.4		99.7	97.2
F-F	$D_{\infty h}$	r (FF)	1.406	1.402	1.315		1.413	1.416

${ }^{a}$ Except where otherwise noted, experimental data for diatomic molecules from S. Boucier, "Spectroscopic Data Relative to Diatomic Molecules", Vol. 17 of "Tables of Constants and Numerical Data", Pergamon Press, Elmsford, N.Y., 1970, or from G. Herzberg, "Spectra of Diatomic Molecules", Van Nostrand-Reinhold, Princeton, N.J., 1970. For polyatomic molecules from J. H. Callomon, E. Hirota, K. Kuchitsu, W. J. Lafferty, A. G. Maki, and C. S. Pote, "Structure Data on Free Polyatomic Molecules", Vol. 7 of Landolt-Bornstein, "Numerical Data and Function Relationships in Science and Technology", New Series, K. H. Hellwege, Ed., Springer-Verlag, West Berlin, 1976. ${ }^{b}$ Estimate of LiO bond length from M. W. Chase, J. L. Curnutt, A. T. Hu, H. Prophet, A. N. Syverud, and L. C. Walker, J. Phys. Chem. Ref. Data, 3,
 ${ }^{d}$ Experimental r_{c} structure from G. L. Blackman, R. D. Brown, P. D. Godfrey, and H. I. Gunn, Nature (London), 261, 395 (1976); E. F. Pearson. R. A. Creswell, M. Winnewisser, and G. Winnewisser, Z. Naturforsch. A. 31, 1394 (1976). ${ }^{e}$ Experimental r_{5} structure from M. C. L. Gerry, R. M. Lees, and G. Winnewisser, J. Mol. Spectrosc., 61, 231 (1976).f Experimental $r_{\text {s }}$ structure from N. W. Clark and F. C. De Lucia, J. Mol. Struct., 32, 29 (1976). \& Experimental r_{s} structure from S. Tsunekawa, J. Phys. Soc. Jpn, 41, 2077 (1976).
Table IX. Energies of Molecules (hartrees)

molecule	$6-21 \mathrm{G} / / 6-21 \mathrm{G}$	3-21G//3-21G	4-31G//4-31G	molecule	6-21G//6-21G	3-21G//3-21G	4-31G//4-31G
H_{2}	-1.12296	-1.12296	-1.126 38	HNC	-92.747 31	-92.339 71	-92.716 78
LiH	-7.978 84	-7.929 84	-7.977 35	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	-95.084 98	-94.68166	-95.071 66
BeH_{2}	-15.755 29	-15.67378	-15.754 61	CO	-112.572 47	-112.093 30	-112.55236
BH_{3}	-26.362 27	-26.23730	-26.349 27	$\mathrm{H}_{2} \mathrm{CO}$	-113.69854	-113.22182	-113.69262
CH_{4}	-40.149 26	-39.976 88	-40.139 77	$\mathrm{CH}_{3} \mathrm{OH}$	-114.872 52	-114.398 02	-114.871 52
NH_{3}	-56.103 65	-55.872 20	-56.106 69	$\mathrm{CH}_{3} \mathrm{~F}$	-138.836 23	-138.28189	-138.858 61
OH_{2}	-75.888 43	-75.58596	-75.908 64	N_{2}	-108.77100	-108.300 95	-108.754 22
FH	-99.842 40	-99.460 22	-99.88729	$\mathrm{N}_{2} \mathrm{H}_{2}$	-109.821 12	-109.354 77	-109.81269
Li_{2}	-14.866 74	-14.769 25	-14.860 66	$\mathrm{N}_{2} \mathrm{H}_{4}$	-111.012 54	-110.550 00	-111.006 75
LiOH	-82.80381	-82.453 25	-82.81701	HNO	-129.576 56	-129.038 29	-129.579 22
LiF	-106.784 09	-106.354 19	-106.824 09	$\mathrm{NH}_{2} \mathrm{OH}$	-130.789 76	-130.25629	-130.79188
$\mathrm{B}_{2} \mathrm{H}_{6}$	-52.745 20	-52.49781	-52.719 40	O_{2}	-149.380 36	-148.769 08	-149.39296
$\mathrm{C}_{2} \mathrm{H}_{2}$	-76.744 11	-76.39596	-76.711 41	$\mathrm{H}_{2} \mathrm{O}_{2}$	-150.55180	-149.945 82	-150.559 91
$\mathrm{C}_{2} \mathrm{H}_{4}$	-77.94798	-77.600 99	-77.922 16	HOF	-174.48755	-173.800 67	-174.515 85
$\mathrm{C}_{2} \mathrm{H}_{6}$	-79.138 02	-78.79395	-79.11593	F_{2}	-198.412 51	-197.644 24	-198.458 43
HCN	-92.760 38	-92.354 08	-92.731 93				

Table X. Calculated and Experimental Vibrational Frequencies $\left(\mathrm{cm}^{-1}\right)$

molecule	vibrational mode	$6-21 \mathrm{G}$	$3-21 \mathrm{G}$	STO-3G	$4-31 \mathrm{G}$	exptl ${ }^{a}$
$\mathrm{H}_{2} \mathrm{O}$	symmetric stretch	3780	3809	4133	3951	3657
	bend	1801	1801	2171	1745	1595
	antisymmetric stretch	3918	3941	4384	4102	3756
NH_{3}	symmetric stretch	3631	3639	3828	3761	623
	bend	877	856	1412	937	3958
	degenerate stretch	3789	3796	4103	3444	
	degenerate bend	1859	1858	2077	1821	1627

${ }^{a}$ Experimental frequencies from T. Shimanouchi, "Tables of Molecular Vibrational Frequencies". Natl. Stand. Ref. Data Ser., Nat. Bur. Stand., No. 39 (1972).

Table XI. Calculated and Experimental Energies of Hydrogenation Reactions ($\mathrm{kcal} \mathrm{mol}^{-1}$)

hydrogenation reaction	$6-21 G / / 6-21 G$	$3-21 G / / 3-21 G$	STO-3G//STO-3G	$4-31 G / / 4-31 G$	exptl^{a}
$\mathrm{Li}-\mathrm{Li}+\mathrm{H}_{2} \rightarrow 2 \mathrm{LiH}$	18.2	18.5	18.5	20.6	19.8
$\mathrm{Li}-\mathrm{OH}+\mathrm{H}_{2} \rightarrow \mathrm{LiH}+\mathrm{H}_{2} \mathrm{O}$	35.4	36.0	35.6	36.3	30.5
$\mathrm{Li}-\mathrm{F}+\mathrm{H}_{2} \rightarrow \mathrm{LiH}+\mathrm{HF}$	51.9	52.7	34.1	54.1	49.6
$\mathrm{CH}_{3}-\mathrm{CH}_{3}+\mathrm{H}_{2} \rightarrow 2 \mathrm{CH}_{4}$	-25.5	-25.0	-18.8	-23.0	-18.1
$\mathrm{CH}_{3}-\mathrm{NH}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{NH}_{3}$	-30.1	-29.8	-20.0	-30.1	-25.7
$\mathrm{CH}_{3}-\mathrm{OH}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$	-28.4	-28.2	-16.4	-34.1	-30.3
$\mathrm{CH}_{3}-\mathrm{F}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{HF}$	-22.3	-22.2	-8.2	-26.1	-29.5
$\mathrm{NH}_{2}-\mathrm{NH}_{2}+\mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$	-47.0	-46.7	-28.4	-50.1	-50.0
$\mathrm{HO}-\mathrm{OH}+\mathrm{H}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	-66.0	-66.6	-30.9	-81.9	-86.8
$\mathrm{F}-\mathrm{F}+\mathrm{H}_{2} \rightarrow 2 \mathrm{HF}$	-95.6	-98.1	-29.2	-118.8	-133.8
$\mathrm{CH}_{2}=\mathrm{CH}_{2}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{CH}_{4}$	-69.4	-70.9	-90.8	-65.1	-57.2
$\mathrm{H}_{2} \mathrm{C}=\mathrm{O}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$	-62.3	-63.5	-64.9	-64.1	-57.3
$\mathrm{HN}=\mathrm{NH}+2 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$	-91.8	-94.0	-74.6	-92.3	-83.5
$\mathrm{HN}=\mathrm{O}+2 \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$	-110.3	-113.0	-77.7	-114.5	-102.9
$\mathrm{HC} \equiv \mathrm{CH}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{CH}_{4}$	-122.2	-124.3	-153.7	-117.7	-105.4
$\mathrm{HC} \equiv \mathrm{N}+3 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{NH}_{3}$	-83.3	-84.9	-97.0	-84.1	-76.8
$\mathrm{C}^{-} \equiv \mathrm{O}^{+}+3 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}$	-66.2	-68.9	-72.0	-72.5	-63.9
$\mathrm{N} \equiv \mathrm{N}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$	-48.0	-52.5	-36.2	-49.4	-37.7

${ }^{a}$ Experimental thermochemical data from S. W. Benson, "Thermochemical Kinetics". Wiley, New York, 1968.

Table XII. Calculated and Experimental Relative Isomer Energies ($\mathrm{kcal} \mathrm{mol}^{-1}$), STO-3G Optimized Geometries

formula	isomer	$\begin{aligned} & 6-21 \mathrm{G} / 1 \\ & \text { STO-3G } \end{aligned}$	$\begin{aligned} & 3-21 \mathrm{G} / / \\ & \text { STO-3G } \end{aligned}$	$\begin{aligned} & \text { STO-3G// } \\ & \text { STO-3G } \end{aligned}$	$\begin{aligned} & 4-31 \mathrm{G} / / \\ & \text { STO-3G } \end{aligned}$	exptl ${ }^{\text {a }}$
$\mathrm{C}_{3} \mathrm{H}_{4}$	propyne	0	0	0	0	0
	allene	2.1	2.9	17.1	0.8	1.6
	cyclopropene	40.5	39.9	30.0	36.4	22.3
$\mathrm{C}_{3} \mathrm{H}_{6}$	propene	0	0	0	0	0
	cyclopropane	15.8	14.5	-3.7	13.2	7.9
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$	acetonitrile	0	0	0	0	0
	methyl isocyanide	18.2	20.2	24.1	20.6	16.8
$\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}$	trans-ethylamine	0	0	0	0	0
	dimethylamine	5.2	5.2	2.3	6.8	6.5
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	acetaldehyde	0	0	0	0	
	vinyl alcohol	9.3	9.5	18.5	11.7	8 ± 2
	oxacyclopropane	35.2	35.2	11.0	37.8	27.1
$\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$	trans-ethanol	0	0	0	0	${ }^{0}$
	dimethyl ether	5.1	5.2	-0.8	9.5	12.2
$\mathrm{CH}_{3} \mathrm{NO}$	formamide	0	0	0	0	0
	nitrosomethane	66.5	68.4	23.9	65.7	60.5

${ }^{a}$ Experimental thermochemical data from S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rogers, R. Shaw, and R. Walsh, Chem. Rev., 69, 279 (1969).

Table XIII. Calculated and Experimental Electric Dipole Moments (D)

molecule	6-21G//6-21G	3-21G//3-21G	STO-3G//STO-3G	4-21G//4-21G/4b	4-31G/4-31G	expt1 ${ }^{a}$
LiH	5.95	5.99	4.84		5.97	5.88
NH_{3}	1.77	1.75	1.87	1.76	1.42	1.47
OH_{2}	2.37	2.39	1.71	2.19	2.49	1.85
HF	2.15	2.17	1.25	2.19	2.29	1.82
LiF	5.73	5.74	3.11		6.42	6.33
HCN	3.03	3.04	2.45	3.08	3.21	2.98
$\mathrm{CH}_{3} \mathrm{NH}_{2}$	1.44	1.44	1.62	1.48	1.25	1.31
CO	0.40	0.40	0.12	0.60	0.60	0.11
$\mathrm{H}_{2} \mathrm{CO}$	2.64	2.66	1.54	2.80	3.02	2.33
$\mathrm{CH}_{3} \mathrm{OH}$	2.10	2.12	1.51	2.21	2.28	1.70
$\mathrm{CH}_{3} \mathrm{~F}$	2.32	2.34	1.15		2.63	1.85
$\mathrm{N}_{2} \mathrm{H}_{4}$	2.22	2.24	2.22		1.93	1.75
$\mathrm{NH}_{2} \mathrm{OH}$						$0.59{ }^{\text {b }}$
$\mathrm{H}_{2} \mathrm{O}_{2}$	0.00	0.00	1.30		0.00	2.20

${ }^{a}$ Except where otherwise noted experimental data from R. D. Nelson, D. R. Lide, and A. A. Maryott, "Selected Values of Electric Dipole Moments for Molecules in the Gas Phase", Natl. Stand. Ref. Data Ser, Natl. Bur. Stand. No. 10 (1967). ${ }^{b}$ S. J. Tsunekawa, J. Phys. Soc. Jpn., 38, 167 (1972).
functions, respectively, for a minimal set). Therefore, $3-21 \mathrm{G}$ computations which are heavily dominated by derivative evaluation should be of comparable cost to those at the minimal basis STO-3G level, while "single-point" calculations, which are often dominated by the SCF procedure, are apt to be significantly most costly. Although the $3-21 \mathrm{G}$ basis set does not perform as well as 4-31 G with regard to the calculation of reaction energies, its performance in other areas (e.g., equilibrium geometries, vibrational frequencies and electric dipole moments) is equal to or better than that of $4-31 \mathrm{G}$. Furthermore, it is clearly superior to STO-3G both as a means for determining equilibrium geometries and force constants and for assessing relative molecular energies. Because of its increased number of basis functions (but not of primitive Gaussians), the range of application of the 3-21G basis to large molecules may be more limited than STO-3G. Nevertheless, where size limitations do not restrict its use, we suggest that the $3-21 \mathrm{G}$ split-valence basis set provides a reasonable alternative to the minimal STO-3G as a general tool for the investigation of molecular structure.

Acknowledgments. We are indebted to Dr. P. Pulay for an advance copy of ref 4 b . This research was supported by grants from the National Science Foundation (Grant CHE75-09808
at Carnegie-Mellon University and Grant CHE77-04977 at the University of California).

References and Notes

(1) (a) Carnegie-Melion University; (b) University of California
(2) (a) See: J. A. Pople and W. J. Hehre, J. Comput. Phys.. 27, 161 (1978); (b) R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 54, 724 (1971); (c) W. J. Hehre and J. A. Pople, ibid., 56, 4233 (1972).
(3) (a) W. J. Hehre, R. Ditchfield, and J. A. Pople, J. Chem. Phys., 56, 2257 (1972); (b) J. D. Dill and J. A. Pople, ibid., 62, 2921 (1975); (c) J. S. Binkley and J. A. Pople, Ibid. 66, 879 (1977).
(4) See, for example: (a) D. Poppinger, Chem. Phys., 12, 131 (1976); (b) P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, J. Am. Chem. Soc., 101، 2550 (1979).
(5) J. A. Pople and R. K. Nesbet, J. Chem. Phys., 22, 571 (1954).
(6) F. B. van Duilineveldt, "Gaussian Basis Sets for the Atoms H-Ne for Use in Molecular Calculations', IBM Publication RJ 945 (No. 16437).
(7) All molecular calculations have been carried out using the GAUSSIAN $77 / \mathrm{UCl}$ program ${ }^{8}$ on a Harris Corp. Slash 6 digital computer and the GAUSSIAN 78/CMU program ${ }^{9}$ on a Digital Equipment Corp. Vax 11/780 digital computer.
(8) D. J. DeFrees, B. A. Levi, S. K. Pollack, E. S. Blurock, and W. J. Hehre, to be submitted to Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind.
(9) J. S. Binkley, R. A. Whiteside, R. Krishnan, H. B. Schlegel, R. Seeger, D. J. DeFrees, and J. A. Pople, to be submitted to Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind.
(10) W. A. Lathan, W. J. Hehre, L. A. Curtiss, and J. A. Pople, J. Am. Chem. Soc., 93, 6377 (1971).
(11) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, 2657 (1969).
(12) See: (a) W. A. Lathan, L. A. Curtiss, W. J. Hehre, J. B. Lisle, and J. A. Pople, Prog. Phys. Org. Chem., 11, 175 (1974); (b) J. A. Pople in '"Modern Theoretical Chemistry", Vol. 4, H. F. Schaefer, Ed., Plenum Press, New York, 1977, p 1.
(13) STO-3G and 4-31G force constants for water and ammonia required for the calculation of vibrational frequencies have been reported: H. B. Schlegel and S. Wolfe, J. Chem. Phys., 63, 3632 (1975).
(14) The performance of the STO-3G and 4-31G basis sets with regard to the calculation of hydrogenation energies has previously been discussed: W. J. Hehre, R. Ditchfield, L. Radon, and J. A. Pople, J. Am. Chem. Soc., 92, 4796 (1970).
(15) A number of comparisons of relative isomer energies at the STO-3G// STO-3G and 4-31G//STO-3G levels have appeared in the literature: (a) L.

Radom, W. J. Hehre, and J. A. Pople, J. Am. Chem. Soc., 93, 5339 (1971); (b) W. A. Lathan, L. Radom, P. C. Hariharan, W. J. Hehre, and J. A. Pople, Fortschr. Chem. Forsch., 40, 1 (1973).
(16) We propose a nomenclature $A / / B$ to indicate calculations which have been performed at level A using a geometry which is optimum for level B. Thus 3-21G//STO-3G indicates a 3-21G level calculation using an optimum STO-3G geometry.
(17) Limited assessment of the STO-3G and 4-31G basis sets with regard to the calculation of dipole moments has previously been published: ref $2 a$ and 15a and (a) W. J. Hehre and J. A. Pople, J. Am. Chem. Soc., 92, 2191 (1970); (b) ibid., 97,6941 (1975).
(18) J. S. Binkley, J. A. Pople, M. S. Gordon, and W. J. Hehre, unpublished results.

A Theoretical Study of the Structure and Charge Distribution of Some Alkynylcarbenium Ions

M. Dorado, O. Mó, and M. Yáñez*
Contribution from the Departamento de Quimica Física y Química Cuántica, Centro Coordinado CSIC-UAM, Facultad de Ciencias C-XIV, Universidad Autónoma, Cantoblanco, Madrid, 34, Spain. Receiced February 28, 1979

Abstract

We have carried out STO-3G minimal basis set "ab initio" calculations to determine the structure and charge distribution, using the YSP population analysis, of the propargyl cation and some of its mono-, di-, and trisubstituted derivatives. Our results indicate that progressive α substitution favors a greater participation of mesomeric form $\mathrm{XYC}_{\alpha}+-\mathrm{C}_{\beta}=\mathrm{C}_{\gamma}-$ Z , while γ substitution increases the contribution of form $\mathrm{XYC}_{\alpha}=\mathrm{C}_{\beta}=\mathrm{C}_{\gamma}+-\mathrm{Z}$. The relative stability of the different derivatives is also discussed.

I. Introduction

Alkynylcarbenium ions were directly observed first by Richey, Philips, and Rennick ${ }^{1}$ in 1965. Ever since, the number of experimental and theoretical studies on these (and related) cations has been considerable. ${ }^{2}$ This interest is justified because alkynyl cations are directly related to and can be a convenient model ${ }^{3}$ for vinyl cations, which are, in turn, intermediates in solvolyses of vinyl halides, ${ }^{4-7}$ vinyl triflates, ${ }^{78}$ and the electrophilic addition to alkynes. ${ }^{9}$

Alkynyl cations can exist in the two mesomeric forms presented in Figure 1.

Since the paper of Richey et al. ${ }^{1}$ was published, a considerable experimental effort was devoted to studying the inherent stabilities, structure, ${ }^{10,11}$ and charge distribution ${ }^{3}$ of these cations. This last aspect constitutes one of the most recent and interesting applications of ${ }^{13} \mathrm{C}$ magnetic resonance spectroscopy, since it has been proved ${ }^{12}$ that chemical shifts reflect the charge densities on carbons of similar hybridization and substitution.

All these experimental studies ${ }^{3,10,11}$ indicate that mesomeric form II is an important contributor to the stability of these cations. However, little can be said on how substituents might change the relative importance of these mesomeric forms, because only tertiary ions are stable, and this makes observation of electronic changes at $\mathrm{C}_{\mathrm{c}}, \mathrm{C}_{\beta}$, or C_{γ} impossible. ${ }^{3}$ However. theoretical work can yield valuable information on this problem.

The first members of this family, propargyl cation and its possible isomers, have been already studied at the "ab initio" level. using different basis sets. ${ }^{13}$ However, no effort was devoted to evaluate the structure and charge distribution of alkynyl cations, with the only exception being the semiempirical calculations of Pittman et al. ${ }^{14}$

In this paper we present an "ab initio" study of some alkynylcarbenium ions. We will center our discussion on the rel-
ative stability of mesomeric forms 1 and 11 and on the influence of the substituents on the stability of either form, in each particular case. We will calculate the charge distribution using the YSP population analysis, ${ }^{15}$ which has been proved very reliable ${ }^{16}$ to evaluate charge densities in neutral and charged systems.

YSP population analysis is a density-partitioning technique based on the representation of the electron density $\rho(r)$ by an expansion in terms of spherical atomic density basis functions which do not present the limitations of the Mulliken population analysis, in the sense that the charge distributions obtained do not depend on the details of the basis set used in spanning the molecular wave function.

II. Calculations

We have carried out a geometry optimization of these mono-, di-, and trisubstituted propargyl cation derivatives (Illa-l), presented in Figure 2, using a STO-3G minimal basis set. ${ }^{17}$

In the optimization process for 1IIb-f, the following restrictions were adopted: the methyl group was kept unchanged, assuming local $C_{3 i}$ symmetry with CH bond lengths equal to $1.10 \AA$ and HCH bond angles equal to 109.47°. For IIII cation, the NH_{2} group was also kept unchanged and in the same plane of the molecule, assuming local $C_{2 v}$ symmetry with NH bond length equal to $1.0 \AA$ and the NHN bond angle equal to 120°. In all cases (11Ia-l) we have taken the $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}-\mathrm{C}_{\gamma}$ skeleton as linear.

With these restrictions, all the remaining parameters were optimized, until changes in the total energy were less than 10^{-5} au for variations of $\pm 0.005 \AA$ in the bond lengths and 0.1° in the bond angles.

III. Monosubstituted Derivatives

We present in Table I the optimized geometry of propargyl

[^0]: ${ }^{a}$ Each molecule has equal AH bond lengths R and equal HAH bond angles θ. Angles for $\mathrm{BeH}_{2}, \mathrm{BH}_{3}$, and CH_{4} are fixed by symmetry constraints, $D_{\infty h}, D_{3 h}$, and T_{d}.

